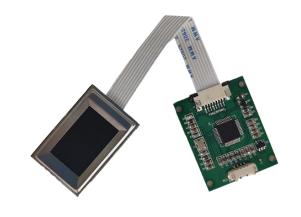
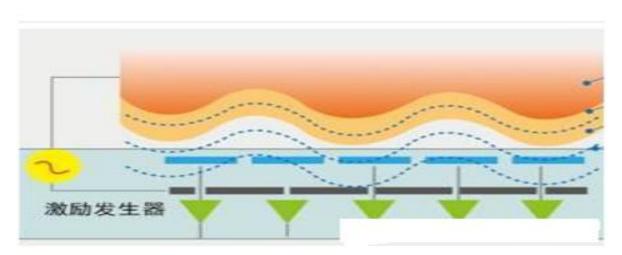
指纹识别模块 (RM2108) 用户指南

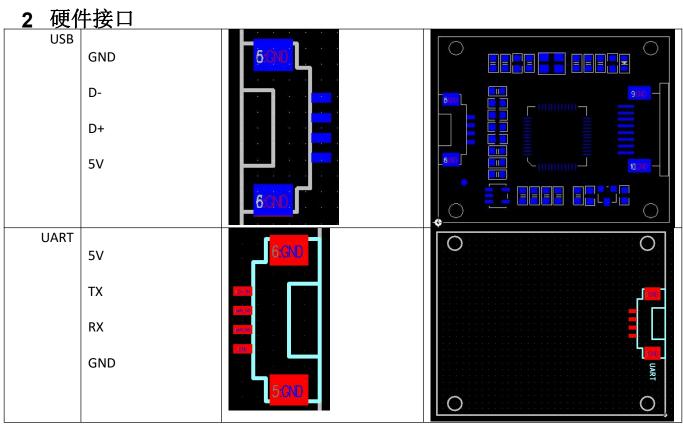

文档版本 V1.3 深圳市星高科技发展有限公司 2021年1月8日 版权所有

模块说明:

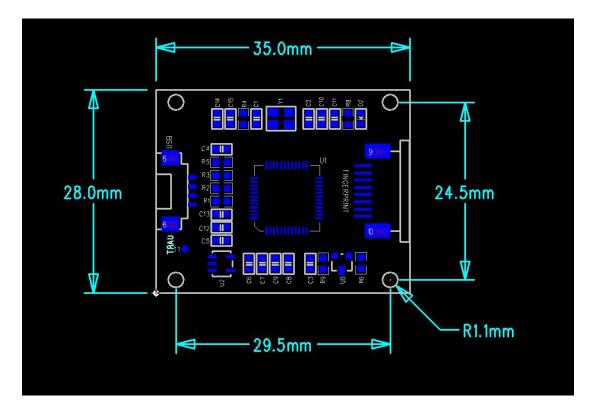
RM2108 指纹模块为集成电容芯片采集和指纹处理 的一体化指纹处理模块,


具有体积小、功耗低、接口简单的特点,可靠性高、防伪度高 杜绝指纹膜等问题。指纹图像读取时,对于湿手指都有灵敏的反应和判断,获得最佳的成像质量,适用人群广泛。 也可定制自学习适应功能,根据使用者的习惯、气候等的变化自动调整参数,做到更好的匹配。 具备自学习功能,指纹识别过程中,提取新的指纹特征值识别成功后将该特征值融合到之前的指纹特征中,实际使用过程中越用越好用。

RM2108 模块可以通过 USB 和 UART 两种通讯协议和主设备通讯,本模块作为从设备,由主设备发送相关命令,对其进行控制。主设备通过 4PIN*1.25 电子线连接模块。


工作原理:

指纹识别系统通过特殊的电容感应设备和图像处理技术,对指纹进行采集、分析和比对,可以自动、迅速、准确地鉴别出个人身份。系统主要包括对指纹图像采集、指纹图像处理、特征提取、特征值的比对与匹配等过程



1.3 技术指标

类别	参	数	Min	Typical	Max	备注
	长(mm)			35.0		
模块尺寸	宽(mm)			28.0		
	高(mm)			1.1		
	窗口区	长(mm)		18.0		
		宽(mm)		12.8		
传感器	有效像素			256* 360		
	分辨率(dpi)			508		
	背光颜色	7		无		
	整体识别时间(s)			<1		
	搜索时间(s)			<0.5		
算法	存储容量(枚)			1000		支持本地和后台存 储
	认假率			<0.001%		194
	据真率			<1%		
	U 波 ^物	持率 bps		57600		
	A 数	居位		8		
通讯接口	R 停」	止位		2		
	T校型	脸位		None		
	USB			2.0FS		2.0 全速
	电压(V)		3.0	3.3	3.6	
电气参数	待机电流	E(uA)	5	<40 mA		仅感应部分工作
	工作电流(mA)			<20 0 mA		
工作环境	温度(℃)		-20		60	
→ 1 L ~ 1.20g	湿度(℃)		40%RH		85%RH	无凝露

模块外形尺寸图(单位: MM):

2 硬件接口

传感器尺寸: 2108 F2(256*360)

- RoHS 认证
- IP67 防水等级
- 美国 FBI PIV 认证
- 公安部一所认证
- 支持公安部二代证和 ISO 算法
- 支持 ANSI 算法
- ESD 空气±15KV,空气±8KV

2.1 硬件连接

可与 3.3V 电源的单片机或其他 MCU 进行串口通讯。考虑到整体电路的功耗,指纹模块只有工作和不工作两种状态,没有休眠或待机状态;平常关闭指纹模块电源输入,指纹模块不工作;当单片机(MCU)功能中需要接入指纹模块,提供指纹模块电源输入,指纹模块工作,完成相应的命令,如不再使用指纹模块,则切断指纹模块电源,指纹模块模块进入不工作状态。

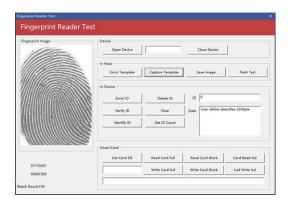
2.2 触摸感应(定制款,标准出货的是不带)

触摸感应电源输入端,默认接入电压为 3.3V,触摸感应电路整体功耗电流<10uA; 该电路可以持续一直供电。

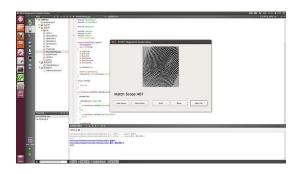
触摸感应信号输出,高电平有效。手指没有放在采集窗上的时候,触摸信号输出为低电平;当手指放在采集窗上,触摸信号输出变化为高电平。该信号可以通过一定的电路接入单片机(MCU)的中断脚或者 IO 口,当收到感应信号以后,唤醒单片机(MCU),给指纹模块供电,指纹模块开始工作(考虑到整体电路的功耗,指纹模块只有工作和不工作两种状态,没有休眠或待机状态。

平常只是给触摸电路提供电源,关闭指纹模块电源输入,指纹模块不工作;当感应到触摸信号以后,提供指纹模块电源输入,指纹模块工作,完成相应的命令,如不再使用指纹模块,则切断指纹模块电源,指纹模块进入不工作状态)。

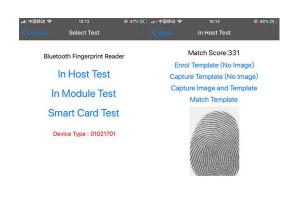
2.3 串行协议

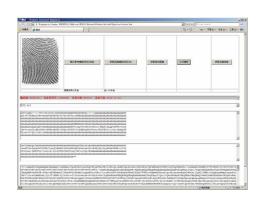

采用半双工异步串行通讯。默认波特率为 57600bps,可定制其他波特率。传送的帧格式为 10 位,一 位 0 电平起始位,8 位数据位(低位在前)和 2 位停止位,无校验位。

2.4 上电延时时间


模块上电后,约需 100mS 时间进行初始化工作。在此期间,模块不能响应上位机命令。

4 功能实现示例


WINDOWS (32/64)


Linux Support 32bit 64bit

iOS(Bluetooth)

WEB(支持常见 IE 谷歌 火狐等浏览器)

Android

USB Reader for Raspberryb

4.1 UART 和 USB 命令包的处理过程

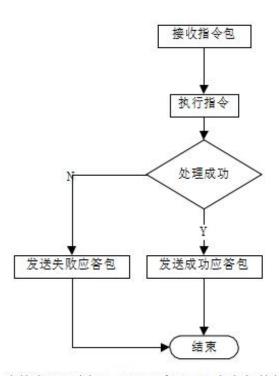


图 4-1 功能实现示例 6: UART 和 USB 命令包的处理过程

4.2 UART 数据包的发送过程

UART 传输数据包前,首先要接收到传输数据包的指令包,做好传输准备后发送成功应 答包,最后才开始传输数据包。数据包主要包括:包头、芯片地址、包标识、包长度、数据 和校验和。

数据包的包标识主要分为两种: 02H 和 08H。02H: 数据包,且有后续包。08H:最后一个数据包,即结束包。数据长度是预先设置好的,主要分为: 32、64、128、和 256 四种,。

例如,要传输的数据长度为 1K bytes,数据包中预先设置的数据长度为 128 bytes,那 么就要把 1K bytes 的数据分为 8 个数据包传输。每个数据包包括: 2 bytes 包头、4 bytes 芯片地址、1 bytes 包标识、2 bytes 包长度、128 bytes 数据和 2 bytes 校验和,每个数据包长度为 139 bytes。另外,8 个数据包中,前 7 个数据包的报标识是 02H,最后一个结束数据包报标识是 08H。最后需要注意的是,结束包如果长度没有达到 139 bytes 时,以实际长度传输,不会以其他方式扩充到 139 bytes。

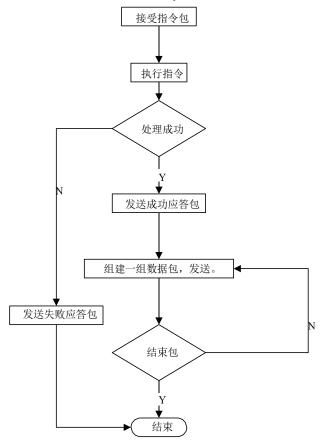


图 4-2 功能实现示例 7: UART数据包的发送过程

4.3 UART 数据包的接收过程

UART 传输数据包前,首先要接收到传输数据包的指令包,做好传输准备后发送成功应答包,最后才开始传输数据包。数据包主要包括:包头、芯片地址、包标识、包长度、数据和校验和。

数据包的包标识主要分为两种: 02H 和 08H。02H: 数据包,且有后续包。08H:最后一个数据包,即结束包。数据长度是预先设置好的,主要分为: 32、64、128、和 256 四种,。

例如,要传输的数据长度为 1K bytes,数据包中预先设置的数据长度为 128 bytes,那么就要把 1K bytes 的数据分为 8 个数据包传输。每个数据包包括:2 bytes 包头、4 bytes 芯片地址、1 bytes 包标识、2 bytes 包长度、128 bytes 数据和 2 bytes 校验和,每个数据包长度为 139 bytes。另外,8 个数据包中,前 7 个数据包的报标识是 02H,最后一个结束数据包报标识是 08H。最后需要注意的是,结束包如果长度没有达到 139 bytes 时,以实际长度传输,不会以其他方式扩充到 139 bytes。

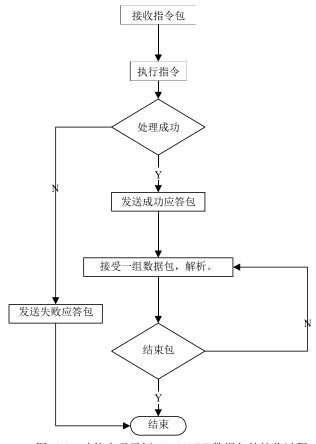


图 4-3 功能实现示例 8: UART数据包的接收过程

4.4 USB 数据包的发送和接收过程

USB 传输数据包前,首先要接收到传输数据包的指令包,做好传输准备后发送成功应答包,最后才开始传输数据包。USB 数据包只有数据,没有包头、芯片地址、包标识、包长度和校验和,且不同于 UART 分包传输,USB 是整包传输的。

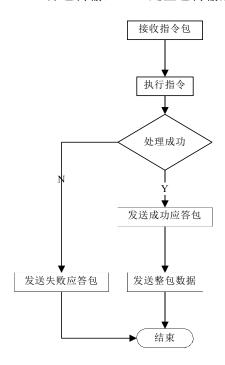


图 4-4 功能实现示例 9: USB 数据包的发送过程

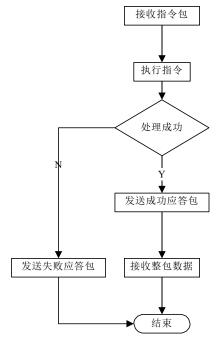


图 4-5 功能实现示例 9: USB 数据包的发送过程

4.5 自动注册模板流程

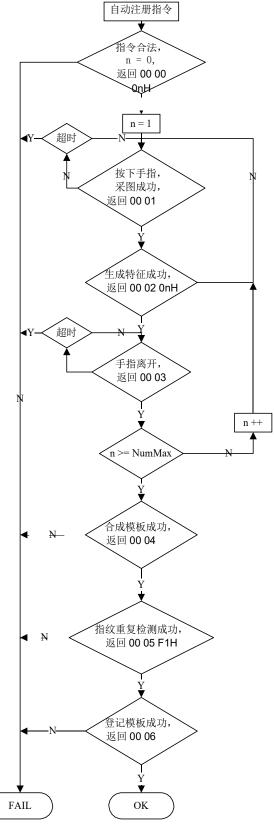


图 4-6 功能实现示例 10: 自动注册模板流程

4.6 自动验证指纹流程

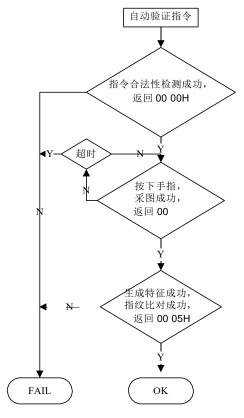


图 4-7 功能实现示例 11: 自动验证指纹流程

5 指令格式详解

RM2108 指纹模块挂接必要的外围电路(传感器、电源等)后即可构成完整的指纹 识别模块,模块始终处于从属地位(Slave mode),主机(Host)需要通过不同的指令让模块完成各种功能。主机的指令、模块的应答以及数据交换都是按照规定格式的数据包来进行 的。主机必须按照下述格式封装要发送的指令或数据,也必须按下述格式解析收到的数据包。

5.1 指令包/数据包格式

指令/数据包共分为三类: 包标识=01: 命令包。

包标识=02:数据包,且有后包。

包标识=08:最后一个数据包,

即结束包。所有的数据包都要

加包头: 0xEF01。

● 01 命令包格式:

表 5-1 命令包格式

名称	包头	芯片地址	包标识	包长度	指令	参数 1	 参数 N	校验和
字节数	2 bytes	4 bytes	1 byte	2 bytes	1 byte			2 bytes
内容	0xEF01	xxxx	01	N=				

● 02 数据包格式:

表 5-2 数据包格式

名称	包头	芯片地址	包标识	包长度	数据	校验和
字节数	2bytes	4bytes	1 byte	2 bytes	N bytes	2 bytes
内容	0xEF01	xxxx	02			

● 08 结束包格式:

表 5-3 结束包格式

名称	包头	芯片地址	包标识	包长度	数据	校验和
字节数	2bytes	4bytes	1 byte	2 bytes	N bytes	2 bytes
内容	0xEF01	XXXX	08			

- ◆ 数据包不能单独进入执行流程,必须跟在指令包或应答包后面。
- ◆ 下传或上传的数据包格式相同。
- ◆ 包长度 = 包长度至校验和(指令、参数或数据)的总字节数,包含校验和,但不 包含包长度本身的字节数。

- ◆ 校验和是从包标识至校验和之间所有字节之和,超出2字节的进位忽略。
- ◆ 芯片地址在没有生成之前为缺省的 Oxffffffff,一旦上位机通过指令生成了芯片地址,则所有的数据包都必须按照生成的地址收发。芯片将拒绝地址错误的数据包。
- ◆ 对于多字节的高字节在前低字节在后(如 2bytes 的 00 06 表示 0006,而不是 0800)。

5.2 指令应答

应答是将有关命令执行情况与结果上报给上位机,应答包含有参数,并可跟后续数据包。 上位机只有在收到 SOC 的应答包后才能确认 SOC 收包情况与指令执行情况。

● 应答包格式:

表 5-4 应答包格式

名称	包头	芯片地址	包标识	包长度	确认码	返回参数	校验和
字节数	2bytes	4bytes	1 byte	2 bytes	1 byte	N bytes	2 bytes
内容	0xEF01		07				

◆ 确认码定义:

00H: 表示指令执行完毕或 OK;

01H:表示数据包接收错误;

02H: 表示传感器上没有手指;

03H: 表示录入指纹图像失败:

04H:表示指纹图像太干、太淡而生不成特征;

05H: 表示指纹图像太湿、太糊而生不成特征;

06H: 表示指纹图像太乱而生不成特征;

07H: 表示指纹图像正常,但特征点太少(或面积太小)而生不成特征;

08H: 表示指纹不匹配;

09H:表示没搜索到指纹:

0aH: 表示特征合并失败;

0bH:表示访问指纹库时地址序号超出指纹库范围;

0cH: 表示从指纹库读模板出错或无效;

0dH: 表示上传特征失败;

0eH: 表示模块不能接收后续数据包;

OfH: 表示上传图像失败:

10H:表示删除模板失败;

11H: 表示清空指纹库失败;

12H:表示不能进入低功耗状态;

13H:表示口令不正确;

14H:表示系统复位失败;

15H: 表示缓冲区内没有有效原始图而生不成图像:

16H:表示在线升级失败:

17H: 表示残留指纹或两次采集之间手指没有移动过;

18H:表示读写 FLASH 出错; f0H:有后续数据包的指令,正确接收后用 0xf0 应答; f1H:有后续数据包的指令,命令包用 0xf1 应答; f2H:表示烧写内部 FLASH 时,校验和错误; f3H:表示烧写内部 FLASH 时,包标识错误; f4H:表示烧写内部 FLASH 时,代码

长度太长; f6H:表示烧写内部 FLASH 时,烧写 FLASH 失败;

19H: 未定义错误;

1aH: 无效寄存器号;

1bH: 寄存器设定内容错误号;

1cH: 记事本页码指定错误;

1dH: 端口操作失败: 1eH: 自动注册

(enroll) 失败; 1fH: 指纹库满;

20H-efH: Reserved.

指令只能由上位机下给模块,模块向上位机应答。 系统上电复位后将首先检查默认的设备握手口令是 否被修改,若未被修改,则系统认为上位机没有验证口令的需求,SOC 直接进入正常工作状态; 若已被 修改,则必须首先验证设备握手口令,口令通过后SOC 才进入正常工作

5.3 模块指令集

5.3.1 自动注册模板 PS AutoEnroll

● 功能说明: 一站式注册指纹,包含采集指纹、生成特征、组合模板、存储模板等功能。

● 输入参数: ID 号、录入次数、参数

● 返回参数: 确认字、参数

● 指令代码: 31H

● 指令包格式:

表 5-5 自动注册模板指令包格式

包头	芯片地址	包标识	包长度	指令码	ID 号	录入次数	参数	校验和
2 bytes	4bytes	1 byte	2 bytes	1byte	2 byte	1byte	2byte	2 bytes
0xEF01	xxxx	01H	0008H	31H	xxxxH	xxH	xxH	SUM

● 辅助说明:

ID号: 高字节在前, 低字节在后。例如录入1号指纹, 则是0001H。 录入次

数: 1byte, 录入 2 次,则为 02H,录入 4 次则为 04H。 参数:最低位为 bit0。

- 1) bit0: 采图背光灯控制位, 0-LED 长亮, 1-LED 获取图像成功后灭;
- 2) bit1: 采图预处理控制位, 0-关闭预处理, 1-打开预处理;
- 3) bit2: 注册过程中,是否要求模块在关键步骤,返回当前状态,0-要求返回,1-不要求返回;
- 4) bit3: 是否允许覆盖 ID 号, 0-不允许, 1-允许;
- 5) bit4: 允许指纹重复注册控制位, 0-允许, 1-不允许;
- 6) bit5: 注册时,多次指纹采集过程中,是否要求手指离开才能进入下一次指纹图像 采集, 0-要求离开; 1-不要求离开;
- 7) bit6~bit15: 预留。
- 应答包格式:

表 5-6 自动注册模板指令正常流程应答包格式

<i>5</i> N	#* 11 101 11	6 E.N.	与以序	77 N 70	参数	2 byte	I→¬∧ ₹+	<i>A</i> . V.
包头	芯片地址	包标识	包长度	确认码	参数 1	参数 2	校验和	备注
2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	1 byte	2 bytes	
0xEF01	xxxx	07H	5	xxH	0H	ОН	sum	指令合法性检测: 合法/
0xEF01	xxxx	07H	5	xxH	01H	1	sum	采图结果: 成功/超时
0xEF01	xxxx	07H	5	xxH	02H	1	sum	生成特征结果: 成功/失败
0xEF01	xxxx	07H	5	xxH	03H	1	sum	手指离开, 第 1 次录入成功: 成功/超时
0xEF01	xxxx	07H	5	xxH	01H	n	sum	采图结果: 成功/超时
0xEF01	xxxx	07H	5	xxH	02H	n	sum	生成特征结果: 成功/失败

<i>5</i> N			石以序	77) L 77	参数	2 byte	レショムブロ	A.V.
包头	心厅地址	包标识	包长度	确认码	参数 1	参数 2	校验和	备注
0xEF01	XXXX	07H	5	ххH	04H	F0H	sum	合并模板
0xEF01	xxxx	07H	5	ххH	05H	F1H	sum	已注册检测
0xEF01	xxxx	07H	5	xxH	06H	F2H	sum	模板存储结果

● 确认码、参数 1 和参数 2 的返回值

表 5-7 自动注册模板应答包释义速查表

确认码	释义	参数 1	释义	参数 2	释义
00H	成功	00H	指纹合法性检测	00H	指纹合法性检测
01H	失败	01H	获取图像	F0H	合并模板
07H	生成特征失败	02H	生产特征	F1H	检验该手指是否已注册
0aH	合并模板失败	03H	判断手指离开	F2H	存储模板
0bH	ID 号超出范围	04H	合并模板	n	当前录入第 n 次数
1fH	指纹库已满	05H	注册检验		
22H	指纹模板非空	06H	存储模板		
25H	录入次数设置错误	-			
26H	超时				
27H	指纹已存在				

● 指令说明:

- 1) 若指定 ID 号无效,则确认码、参数 1 和参数 2 返回(以下直接描述为返回): 0b 00 00 H。 合法性检测:
 - 若指定 ID 号无效,则返回: 0b 00 00H。
 - 若录入次数配置错误,则返回 25 00 00H。在不覆盖指纹状态下,若指纹库已满则返回 1f 00 00H;
 - 若指定 ID 号已存在模板则返回 22 00 00H。
 - 指令合法性检测成功,则返回 00 00 00H,并进入第一次指纹录入。
- 2) 等待彩图成功(返回 00 01 0nH)。
- 3) 等待生成特征成功(00 02 0nH),如果失败(07 02 0nH),重新等待彩图成功。
- 4)等待手指离开,第一次录入成功(00 03 0nH),手指离开后跳转到步骤 2,进入下一次循环,直到 n 为设置录入的次数。注:若录入过程中设置为手指不需要离开,那么直接返回第一次录入成功,并跳转到步骤 2;最后一次采集指纹,没有手指离开录入成功的应答。
- 5) 合成模板,将之前获取的手指特征组合成一个手指模板,成功返回 00 04 F0H,失败返回 0A 04 F0H。

- 6) 指纹重复检查,指将新录入的手指与已经存储的手指进行匹配检查(通过设置参数 bit4 开启或者关闭此功能),若有相同指纹,则返回 27 05 F1H,结束流程;若没有相同指纹,则返回 00 05 F1H。
- 7) 登记该模板数据,存储失败返回 01 06 F2H,结束流程;成功返回 00 06 F2H。
- 8) 若收到 PS Cancel 指令,则终止该指令并返回应答。

5.3.2 自动验证指纹 PS_AutoIdentify

●功能说明:自动采集指纹,在指纹库中搜索目标模板或整个指纹模 板,并返回搜索结果。如果目标模板同当前采集的指纹比对得分大于最高阀值,并且目标模板为不完整特征则以采集的特征更新目标模板的空白区域。一站式 搜索包含获取图像,生成特征,搜索指纹等功能。

●输入参数: 安全等级、ID号

●返回参数: 确认字,页码(相配指纹模板)

●指令代码: 32H

●指令包格式:

表 5-8 自动验证指纹指令包格式

包头	芯片地址	包标识	包长度	指令码	安全等级	ID 号	参数	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	2 byte	2 byte	2 bytes
0xEF01	XXXX	01H	0008H	32H	xxH	xxxxH	xxxxH	xxxxH

● 辅助说明:

ID 号: 2byte, 大端模式。比如录入 1 号指纹,则是 0001H。ID 号为 0xFFFF,则进行 1:N 搜索;否进行 1:1 匹配

参数:最低位为bit0。

- 1) bit0: 采图背光灯控制位, 0-LED 长亮, 1-LED 获取图像成功后灭;
- 2) bit1: 采图预处理控制位, 0-关闭预处理, 1-打开预处理;
- 3) bit2: 注册过程中,是否要求模块在关键步骤,返回当前状态,0-要求返回,1-不要求返回;
- 4) bit3~bit15: 预留。
 - 应答包格式:

表 5-9 自动验证指纹指令应答包格式

包头	芯片地址	包标识	包长度	确认码	参数	ID 号	得分	校验和	备注
2 bytes	4bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes	2 bytes	2 bytes	
0xEF01	xxxx	07H	0008H	xxH	00H	xxxxH	xxxxH	sum	指令合法性检测: 合法/
0xEF01	xxxx	07H	0008H	xxH	01H	xxxxH	xxxxH	sum	采图结果: 成功/超时

包头	芯片地址	包标识	包长度	确认码	参数	ID 号	得分	校验和	备注
0xEF01	xxxx	07H	0008H	xxH	05H	xxxxH	xxxxH	sum	搜索结果: 成功/失败

● 确认码、参数1和参数2的返回值

表 5-10 自动验证指纹应答包释义速查表

确认码	释义	参数	释义
00H	成功	00H	指纹合法性检测
01H	失败	01H	获取图像
07H	生成特征失败	05H	己注册指纹比对
09H	没搜索到指纹		
0bH	ID 号超出范围		
17H	残留指纹		
23H	指纹模板为空		
24H	指纹库为空		
26H	超时		
27H	表示指纹已存在		

● 指令说明:

- 1) 若指纹库为空,则确认码和参数返回(以下直接描述为返回): 24 00H。若指定 ID 号无效,则返回 0b 00H。若已登记的 Template 不存在,则返回 23 00H。
- 2) 指令合法性检测成功,返回 00 00H,并进入指纹录入。
- 3) 在设定的超时时间内, 若没有完成一次完整的指纹录入, 则返回 26 00H, 结束流程。
- 4) 检查输入的指纹图像的正确性。若不正确,则等待下次采集图像。
- 5) 若输入指纹正确,则返回 00 01H,即录入指纹获取图像成功。
- 6) 若生产特征失败,则返回 09 05H,结束流程。
- 7) 生成特征成功后,把当前采集到的指纹模板与已登记的指纹模板之间进行比对,并返回 其结果。若比对失败,则返回 09 05H,结束流程;若比对成功,则返回 00 05H,以及 正确的 ID 号码和得分。
- 8) 若收到 FpCancel 指令,则终止该指令并返回应答。

5.3.3 删除模板 PS_DeletChar

- 功能说明: 删除 flash 数据库中指定 ID 号开始的 N 个指纹模板。
- 输入参数: PageID (指纹库模板号), N (删除的模板个数)。
- 返回参数: 确认字

20

● 指令代码: 0cH

● 指令包格式:

表 5-11 删除模板指令包格式

包头	芯片地址	包标识	包长度	指令码	页码	删除个数	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes	2bytes	2 bytes
0xEF01	xxxx	01H	0007H	0cH	PageID	N	sum

● 应答包格式:

表 5-12 删除模板指令应答包格式

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	07H	0003H	xxH	sum

注: 确认码=00H 表示删除模板成功;

确认码=01H 表示收包有错;

确认码=10H 表示删除模板失

败; sum 指校验和。

5.3.4 清空指纹库 PS_Empty

● 功能说明: 删除 flash 数据库中所有指纹模板。

● 输入参数: none

● 返回参数: 确认字

● 指令代码: 0dH

● 指令包格式:

表 5-13 清空指纹库指令包格式

			10 10 1	月上1月3人十1日、	
包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	01H	0003H	0dH	0011H

● 应答包格式:

表 5-14 清空指纹库指令应答包格式

			AC 0 1 1 111-	T10-54/T10 4 /-	
包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	07H	0003H	xxH	sum

注:确认码=00H表示清空成功;

确认码=01H表示收包有错;

确认码=11H表示清空失败;

sum 指校验和。

5.3.5 取消指令 PS_Cancel

● 功能说明: 取消命令

● 输入参数: 无

● 返回参数: 确认字

● 指令代码: 30H

● 指令包格式:

表 5-15 取消指令包格式

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4bytes	1 byte	2bytes	1 byte	2bytes
0xEF01	xxxx	01H	0003H	30H	xxxxH

● 应答包格式:

表 5-16 取消指令应答包格式

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4bytes	1byte	2bytes	1byte	2bytes
0xEF01	xxxx	07H	03	xxH	sum

注: 确认码=00H 表示取消设置成功。

确认码=01H表示取消设置失败。

sum 指校验和。

5.3.6 休眠指令 PS_Sleep

● 功能说明: 设置传感器进入睡眠模式

● 输入参数: 无

● 返回参数: 确认字

● 指令代码: 33H

● 指令包格式:

表 5-17 休眠指令指令包格式

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4bytes	1 byte	2bytes	1 byte	2bytes
0xEF01	xxxx	01H	0003H	33H	xxxxH

● 应答包格式:

表 5-18 休眠指令应答包格式

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4bytes	1byte	2bytes	1byte	2bytes
0xEF01	xxxx	07H	03	xxH	sum

注: 确认码=00H 表示休眠设置成功。

确认码=01H表示休眠设置失败。

sum 指校验和。

5.3.7 读有效模板个数 PS_ValidTempleteNum

● 功能说明: 读有效模板个数。

● 输入参数: none

● 返回参数: 确认字,有效模板个数 ValidN

● 指令代码: 1dH

● 指令包格式:

表 5-19 读有效模板个数指令包格式

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	01H	0003H	1dH	0021H

● 应答包格式:

表 5-20 读有效模板个数指令应答包格式

包头	芯片地址	包标识	包长度	确认码	有效模板个数	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	2 bytes	2 bytes
0xEF01	XXXX	07H	05H	xxH	ValidN	sum

注:确认码=00H表示读取成功;

确认码=01H表示收包有错;

sum 指校验和。

5.3.8 读索引表 PS_ReadIndexTable (保留)

- 功能说明:读取录入模版的索引表。
- 输入参数: 索引表页码,页码 0, 1, 2, 3分别对应模版从 0-256, 256-512, 512-768, 768-1024 的索引,每 1 位代表一个模版, 1 表示对应存储区域的模版已经录入, 0 表示没录入。
- 返回参数:确认字 + 索引表信息
- 指令代码: 1fH
- 指令包格式:

表 5-21 读索引表指令包格式

包头	芯片地址	包标识	包长度	指令码	页码	校验和
2 bytes	4bytes	1 byte	2bytes	1 byte	1 byte	2bytes
0xEF01	xxxx	01H	0004H	1fH	0~3	xxxxH

● 应答包格式:

表 5-22 读索引表指令应答包格式

包头	芯片地址	包标识	包长度	确认码	索引信息	校验和
2 bytes	4bytes	1byte	2bytes	1byte	32bytes	2bytes
0xEF01	XXXX	07H	23H	xxH	Index	sum

注: 确认码=00H 表示 OK;

确认码=01H 表示收包有

错; sum 指校验和。

5.3.9 设置□令 PS_SetPwd

● 功能说明: 设置模块握手口令。

● 输入参数: PassWord

● 返回参数: 确认字

● 指令代码: 12H

● 指令包格式:

表 5-23 设置口令指令包格式

包头	芯片地址	包标识	包长度	指令码	口令	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	4 byte	2 bytes
0xEF01	xxxx	01H	0007H	12H	PassWord	sum

注:模块地址缺省值为0。

● 应答包格式:

表 5-24 设置口令指令应答包格式

				上・、、は、	
包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 byte	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	07H	0003H	xxH	sum

注: 确认码=00H 表示 OK;

确认码=01H表示收包有错;

sum 指校验和。

5.3.10 验证□令 PS_VfyPwd

● 功能说明: 验证模块握手口令。

● 输入参数: PassWord

● 返回参数: 确认字

● 指令代码: 13H

● 指令包格式:

表 5-25 验证口令指令包格式

包头	芯片地址	包标识	包长度	指令码	口令	校验和
2 bytes	4bytes	1 byte	2 bytes	1 byte	4 byte	2 bytes
0xEF01	xxxx	01H	0007H	13H	PassWord	sum

● 应答包格式:

表 5-26 验证口令指令应答包格式

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 byte	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	07H	0003H	xxH	sum

注: 确认码=00H 表示口令验证正确;

确认码=01H表示收包有错;

确认码=13H表示口令不正确;

sum 指校验和。

5.3.11 获取芯片唯一序列号

● 功能说明:获取芯片唯一序列号。

● 输入参数:预留。

● 返回参数:确认字 + 唯一序列号

● 指令代码: 34H

● 指令包格式:

表 5-21 获取芯片唯一序列号指令包格式

	10 0 = 1						
包头	芯片地址	包标识	包长度	指令码	参数	校验和	
2 bytes	4bytes	1 byte	2bytes	1 byte	1 byte	2bytes	
0xEF01	xxxx	01H	0004H	34H	0	0039H	

● 应答包格式:

表 5-22 获取芯片唯一序列号指令应答包格式

包头	芯片地址	包标识	包长度	确认码	唯一序列号	校验和
2 bytes	4bytes	1byte	2bytes	1byte	32bytes	2bytes
0xEF01	xxxx	07H	23H	xxH	SN	sum

注: 确认码=00H 表示 OK;

确认码=01H表示收包有错;

sum 指校验和。

6 应用注意事项

6.1 上电过程

模块电源上电时,必须保证 UART_RX、UART_TX 引脚为低电平,否则将会引起模块无法正常工作。实际应用时,锁控芯片应该先给模块电源,等待 10ms,再初始化 UART,使 UART_RX、UART_TX 变为高电平。

6.2 下电过程

模块下电时,应当先将 UART_RX、UART_TX 引脚设置为输出低电平,等待 10ms,将模块电源拉低。

7.0 证书附件

FBI认证

公安部认证

防水认证

RoHS 认证